CALCULATION OF NONEQUIMOLAR DIFFUSION
IN MULTICOMPONENT MIXTURES

F. N. Turevskii and I. A. Aleksandrov UDC 533.73

The article considers nonequimolar diffusion in multicomponent mixtures. An exact solution
for the profile of instantaneous concentrations and an approximation to the flows of diffusing
components are obtained.

The study of diffusion and mass transfer in multicomponent mixtures is necessary for the further im-
provement of such widely used processes as rectification, absorption, extraction, etc.

In the study of multicomponent diffusion the cases most commonly considered are those of equimolar
diffusion [1-10] and diffusion in the presence of an inert substance [11, 12]. Subject to certain assumptions,
the process of rectification may be considered on the basis of equimolar diffusion, and the process of ab-
sorption with a gaseous carrier not soluble in the absorbent, or with an absorbent which is not very volatile
can be considered on the basis of diffusion in the presence of an inert substance.

In most processes, however, the mass transfer is nonequimolar, and consequently so is the diffusion;
therefore the solution of the problem of nonequimolar transfer in multicomponent mixtures is of great
importance not only from the scientific but also from the practical point of view.

The purpose of the present paper is to analyze the exact and approximate solution of the equation of
nonequimolar diffusion and estimate theaccuracy of the resulting approximate expressions and the range of
their possible application,

The process of isothermal diffusion in (g + 1)-component gas and liquid mixtures is considered today
to be describable by the following system of differential equations [13]:
g+1
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The equation used for an ideal gas mixture is the Stefan—Maxwell equation [14]
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On the basis of the above equation, we can obtain an approximate solution for flows of such mixtures;
an exact solution for the concentration profile can be obtained only in the case of ideal gas mixtures.

The obvious constraints on the concentrations
g+1 1!

=1 (Zw.=0) 3

leads to the necessity of using additional relations concerning the flows in order to make the systems of
equations (1) and (2) linearly independent.

941
The additional relations are usually determined by the conditions of equimolar diffusion ( 2 N;j =0)
1
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Fig. 1, Variation of the concentrations of the diffusing com-

ponents along the diffusion distance.

or diffusion with an inert subtance (Nq+1 =0).

For conditions of nonequimolar diffusion — i.e., in the general case — we take the given relation
between the flow of the (g + 1)-th component and the sum of all other components:
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which in the special cases z = —1 and z = 0 leads to the conditions of equ1molar diffusion and diffusion with
an inert-substance, respectively.
In view of the constraints concerning the concentrations and the flows, Eq. (2) takes the following
form:
— val Z Ny -/JBIJ 2 NJyzYzJ + WV, @i, g1 i=1,2 9 (5)
1A
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TABLE 1. Reference Systems for Determining Diffusion Flows



(2) and (11)
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Note, N(12), N(ZZ), and NEZ) are the flows determined from Eq. (11); N; 105, g* mole/sec* cmz; Yio and y; are given in mole fractions; D,em/sec; 1, cm.

We can write Eq. (5) in matrix form:
—C(vy) = NLBI@) — "y W1 (N) 4 "N (0g0). 6)

Writing [Y] (N} = (w) and noting that "y (w) = "w_ (y), we
can transform Eq. (6) to the form

—C(ﬁy) = N_IBly) — () +"N_(og.0)- (7)

Integration of the last equation along the diffusion distance
leads to the following expression for the instantaneous concentra-
tions of the diffusing components:

() = exp{— CLIAI} l(g) -+ [AI™ (O)] — LAI1 (), 8)
where

[Al = "N_[B] — "w_ and (0) = N_ (g, (8a)

An analysis of the profiles of instantaneous concentrations,
calculated from Eq. (8) for diffusion in three-component, four-
component, and five-component mixtures containing components
with sharply differing physical properties, has shown that the
law governing the concentrations of the diffusing components along
the diffusion distance is nearly linear. Figures la and 1b show
the characteristic curves of variation of the concentrations as
functions of the diffusion distance for a three-component mixture.
The initial data for the concentration profile shown in Fig. 1b are
taken from [15] as an example of maximum observed nonlinearity
in the concentration curves, but even in this case the linearity as-
sumption is valid for a short diffusion distance.

The total mass flow (diffusive and convective) is determined
by the "generalized Fick law, " or by the phenomenological equa-
tion from the thermodynamics of reversible processes [16-18],

g-+1

Ny=—C¥ Dy + Ny i=12 ..., 9+1, (9
j=1

where
Ny= ¥ V.. (92)

Solving the system of equations (9), where the constraints
on the concentrations (3) and the additional conditions on the flows
(4) have been taken into consideration, we obtain

q
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=1 (1 + Z) yq+1 -2
(10)
i=12 ...,9¢.

Taking the expression in square brackets as the proportion-
ality constant Djj = Djj(Dij, yi, z), we can write Eq. (10) in the
form of a function analogous to the expression for the flow of 2
substance under conditions of equimolar diffusion:

q —
Ny=—C }: D; vy

i=1

i=12 ...,4 (11)

Let us consider, furthermore, how the proportionality con-
stant Eij in Eq. (11) varies as a function of the composition of
the mixture and of the binary diffusion coefficients. Taking ac-
count of the transformations used by Toor [19] for equimolar
diffusion, we can write Eq. (6) in the form
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—C(vy) = [Tu — "yoIv] + ey (N), (12)

where
() = IBI (v). (12a)

Comparing (12) with Fq. (11), we obtain the following expression for the "practical" diffusion co-
efficients:

Dt = ru, + Totg, — Y, Ivl, (13)
and accordingly
g+l y p
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It is readily seen that in the case of equimolar diffusion (z = —1) Eqs. (13) take the form of the equa-

tions used by Toor [19], and in the case of diffusion with an inert substance (z = 0) they become the expres-
sions used by Frank—Kamenetskii [12].

The resulting solutions of the equations of nonequimolar diffusion (11), (13) enable us to state in ex-
plicit form the conditions for diffusion in the laboratory reference system [12, 20]. Table 1 shows the
expressions for the diffusion streams and the average velocities of the diffusing components for various
reference systems, including the laboratory system. As can be seen from the table, for all systems except
the laboratory system the initial conditions taken are the average velocities, on the basis of which we have
obtained expressions for the relation between the flows, while for the laboratory reference system the
assumed conditions for the flow determine the average diffusion velocity,

In general the choice of a particular reference system depends, as is known, on the convenience and
simplicity of the solution of a specific physical problem. The use of the above-cited relations for the labo-
ratory reference system makes it possible to consider nonequimolar diffusion under conditions of given
relations between the flows, for example, in a process with a chemical reaction when the amount of sub-
stance transferred is determined by stoichiometric coefficients, or in which the relation between the flows
has been found experimentally.

It should be noted that the physical meaning of the reference system consists precisely in the additionat
conditions needed for solving the equations of multicomponent diffusion for the mass flows of diffusing com-
ponents,

In the integration of Eq. (1) it is assumed that the practical diffusion coefficients are independent of
the diffusion distance [21, 5, 6, 8], i.e., the equation is linearized.

The correctness of the assumed "linearized" theory under conditions of nonequimolar diffusion has
been verified by comparing the results of calculations for flows with three~component, four-component,
and five-component ideal gas mixtures in accordance with (2) and (11). The values of the elements of the
inverse matrix of practical diffusion coefficients were determined from the arithmetic means of the concen-
trations of the diffusing components.

The calculations were carried out as follows. For the given values of flows and initial concentrations,
in accordance with (2), the final compositions of diffusing components for the corresponding diffusion dis-
tance were calculated on the "Nairi" computer,using a standard program of numerical integration of a
system of linear differential equations by the Runge—Kutta method with an integration interval of 0.01 c¢m,
After that, on the basis of the given and calculated compositions, the flows Nj were determined in accor-
dance with (11),

Table 2 shows the initial data and calculation results for ten characteristic variants of the diffusion.
A comparison of the calculation results shows the applicability of the assumed "linearized™" theory of multi-
component diffusion and the possibility of using the phenomenological equation (11) for describing the gene-
ral case of diffusion, taking account of convective flow.
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In view of the approximate nature of the solution proposed in this paper for the equations of nonequi-
molar diffusion, the values of z used should be checked on the basis of the requirements of thermodynamic
stability of the system, which are formulated from the thermodynamics of irreversible processes [22-24].

NOTATION
C is the total concentration of components in mixture, g.mole /cm3.
Cy is the concentration of component i, g .mole/em?;
Dj;j is the diffusion coefficient of multicomponent mixture;
Tz_ﬁl is the element of the inverse matrix of practical diffusion coefficient;
Dy is the practical diffusion coefficient;
Dij 1isthe diffusion coefficient of binary mixture;
Fij is the coefficient of friction;
Ji is the diffusion flow of component i relative to the given reference system;
l is the diffusion distance;
I is the flow of component i relative to fixed reference system;
Vi is the concentration of component i in vapor phase, g-mole/g .mole;
yg is the initial concentration of component i in vapor phase, g-mole /g -mole;
v is the average velocity of mixture;
Vi is the partial molar volume of component i;
AY is the difference in concentration;
v is the gradient;
[ is the square matrix of order g;
e is the diagonal matrix of order q;
(). isthe column matrix of order g;
i, j are the components (i, j=1, 2, ..., q+1);
i, j are the row and column of matrix (i, j=1,2, ..., q).
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