
CALCULATION OF NONEQUIMOLAR DIFFUSION 

IN MULTICOMPONENT MIXTURES 
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The art icle  considers  nonequimolar diffusion in multieomponent mixtures.  An exact  solution 
for the profile of instantaneous concentrat ions and an approximation to the flows of diffusing 
components are obtained. 

The study of diffusion and mass  t rans fe r  in multieomponent mixtures  is necessa ry  for the further  im-  
provement  of such widely used p roces se s  as rect if icat ion,  absorption, extract ion,  etc. 

In the study of multicomponent diffusion the ca se s  most  commonly considered are those of equimolar  
diffusion [1-10] and diffusion in the presence  of an inert  substance [11, 12]. Subject to cer tain assumptions,  
the process  of rect i f icat ion may be considered on the basis of equimolar  diffusion, and the process  of ab- 
sorption with a gaseous c a r r i e r  not soluble in the absorbent,  or with an absorbent which is not ve ry  volatile 
can be considered on the basis of diffusion in the presence of an inert  substance. 

In most p roces ses ,  however,  the mass  t ransfer  is nonequimolar,  and consequently so is the diffusion; 
therefore  the solution of the problem of nonequimolar t ransfer  in multicomponent mixtures  is of great  
importance not only from the scientific but also from the pract ical  point of view. 

The purpose of the present  paper  is to analyze the exact and approximate solution of the equation of 
nonequimolar  diffusion and es t imate  the aecuracy of the resul t ing approximate express ions  and the range of 
their possible application. 

The p rocess  of i so thermal  diffusion in (q + 1)-component gas and liquid mixtures  is considered today" 
to be describable by the following sys tem of differential equations [131: 

qWI 

--V,tti = ~Fi jCj (v~- -v~) ,  i =  1, 2 . . . . .  q +  1. (1) 

The equation used for an ideal gas mixture is the Stefan--Maxwell equation [141 
q-~-I 

- - C v v ~ - -  ~ N~b'i--Njgi , i =  1, ~, |  . . . .  ' q + t. (2)  

1 r  

On the basis of the above equation, we can obtain an approximate solution for flows of such mixtures:  
an exact  solution for the concentrat ion profile can be obtained only in the case of ideal gas mixtures.  

The obvious constra ints  on the concentrat ions 

q§ q+t 

t 1 

leads to the necess i ty  of using additional relat ions concerning the flows in order  to make the sys tems  of 
equations (1) and (2) l inearly independent. 

q-~-I 

The additional relat ions are usually determined by the conditions of equimolar  diffusion ( ~ N i = 0) 
1 
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V a r i a t i o n  of the concentra t ions  of  the d i f fus ing  c o m -  
ponents  a long  the d i f fus ion  d i s tan ce .  

or d i f fus ion  with an iner t  subtance  (Nq+ 1 = 0). 

For condi t ions  of  n o n e q u i m o l a r  d i f fus ion  - -  i . e . ,  in the genera l  c a s e  - -  we take the g iven  re la t ion  
between the flow of the (q + 1)- th  component  and the sum of all o the r  componen t s :  

g q + l  - -  z ,  (4) q 

1 

w h i c h  in the  s p e c { a l  c a s e s  z = - -1  and  z = 0 l e a d s  to the c o n d i t i o n s  o f  e q u i m o l a r  d i f f u s i o n  and d i f f u s i o n  w i t h  

an i n e r t  s u b s t a n c e ,  r e s p e c t i v e l y .  

In v i e w  of  the  c o n s t r a i n t s  c o n c e r n i n g  the  c o n c e n t r a t i o n s  and  the f l o w s ,  Eq .  (2) t a k e s  the  f o l l o w i n g  

f o r m :  

q q 

- -  CVy , = ~_, N, y2~,j --~_, Njy,?,~ + N,a,, q+l;  i = 1, 2 . . . . .  q,  ( 5 )  
] i  i ~ i  

where  

i 
O$i j=  - -  ; 

C~ ~g 

~ i j  = CZIJ - -  O~i,q+l; 

Yij = aiJ -~ zcq,q+r 

( 5 a )  

TABLE I. 

System 

Mass 

Mole 

Volume 

Inert sub- 
stance (sol- 
vent) 

Laboratory 

R e f e r e n c e  S y s t e m s  for D e t e r m i n i n g  Di f fus ion  F l o w s  

Weighting Co- 
efficient for 
average velo- 
eity~ a i 

Mass fraction 

mi' 

Mole fraction 

Yi 

olume fractiox 

c~V~ 
IKronecker deltal 

8i,a+i 

Average velocity, 
q-}-I 

o ~ = . ~  aivi 
i=l 

Average mass velo J -  
c i t y  a+l 

= Z mi~ fin 
1 

Average mole 
" velocityq~F1 

rAY = E XirAi 
I 

A v e r a g e  v o l u m e  

velocity 
' q - } - I  

uV = ~ a  CiVirAi 
! 

Velocity of inert 
substance 

q...~ j 

VO = ~ ~i'q +lUi 
1" 
a q 

xMj( l  ~z) 

Diffusion flow, 
"a 
Ji =Ci (~'i - va )  

Additional condi- 
tion on flows, 

~ j,.=0 

,r'~ = c~ (vi - -  v") 

:~ = ci (v~-  vy) 

J~= c i  (oi - vv ) 

j0 = c~ (rAi - v0) 

J~ = c, (~'~ " v  z) 

q+i 

�9 

q+l 

i=l  

q+i 

i~I 

0 Jq+i = 0 

Nq+l - - = z  
q 

i=l 
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We can write  Eq. (5) in matr ix  form: 

- -  C (Vg) = :N= [61 (Y) - -  ~g-, [7] (N) + ~ N ,  (%+1). (6) 

Writ ing W](N) = (w) and noting t h a t  y= (w) = -w= (y), we 
can transform Eq. (6) to the form 

- - C ( v b ' )  = - N  : [~] (tj) - -  w= (y) + ,-N: (%+~). (7) 

Integration of the last  equation along the diffusion dis tance  
leads  to the fo l lowing e x p r e s s i o n  for the instantaneous concentra -  
t ions of  the diffusing components:  

(g) = exp { - -  Cl [A]} [(go) + [A] -1 (b)] - -  [A] -1 (b), (8) 

where  

[A] : ~ N  [~1 --:-w= and ( b ) :  :-N~(aq+ O. (8a) 

An ana lys i s  of  the prof i l es  of instantaneous concentrat ions ,  
calculated from Eq. (8) for diffusion in t h r e e - c o m p o n e n t ,  four-  
component ,  and f i v e - c o m p o n e n t  m i x t u r e s  containing components  
with sharply  di f fer ing phys ica l  proper t i e s ,  has shown that the 
law govern ing  the concentrat ions  of the diffusing components  along 
the diffusion distance is nearly linear. Figures Is and Ib show 
the characteristic curves of variation of the concentrations as 
functions of the diffusion distance for a three-component mixture. 
The initial data for the concentration profile shown in Fig. lb are 
taken from [15] as an example of maximum observed nonlinearity 
in the concentration curves, but even in this case the linearity as- 
sumption is valid for a short diffusion distance. 

The total mass flow (diffusive and convective) is determined 
by the "generalized Fick law, " or by the phenomenological equa- 
tion from the thermodynamics of reversible processes [16-18], 

q+l 

A} i = - - C  ~ DuVg J + N~g~, i = 1, 2 . . . . .  q + i ,  (9) 

where 

q+1 

N t = ~ N~. (9a) 
I 

Solving the s y s t e m  of equat ions  (9), where  the constra ints  
on the concentrat ions  (3) and the additional condit ions  on the f lows 
(4) have been taken into cons iderat ion ,  we obtain 

q iVi=C.~I[Di'q+I--DH-}-= (lJ-z)(Dq+l:]--Dq+]'q+l)gi] V I j j ' ( I  -J- z) Yq+l - -  z 

J (I0) 
i = 1 , 2  . . . . .  q. 

Taking the e x p r e s s i o n  in square brackets  as the proport ion-  
ality constant bij = Dij(Di], Yi, z),  we can write Fq. (10) in the 
form of a function analogous  to the e x p r e s s i o n  for the flow of  a 
substance  under condit ions  of  equ imolar  diffusion: 

q 

N~ = - - C  ~ L)uVg3, i = l ,  2 . . . . .  q. (11 )  
/=1 

Let us cons ider ,  fur thermore ,  how the proport ional i ty  c o n -  
stant Di] in Eq. (11) v a r i e s  as a function of the compos i t ion  of 
the mixture  and of  the binary diffusion coef f i c ients .  Taking ac-  
count of  the t rans format ions  used by T o o r  [19] for equimolar  
diffusion,  we can wri te  Eq. (6) in the form 
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- - C ( v y )  = [~-u~ - -  ~-y.~ [71 + r % + ~  (N), (12) 

where 

Comparing (12) with Fq. 
efficients:  

(u) = [p] (y). (12a) 

(11), we obtain the following express ion for the "practical"  diffusion co-  

lD] -I = ~-u~ + r%+1~ -- ~Y~ [7], (13) 

and accordingly 

and 

q+l 

D~ = Z Y: Yi 
1=I ~ J  Z C~i,q+ 1 

(13a) 

DT/' = - - y ,  @ cb ~ �9 (13b) 

It is readily seen that in the case of equimolar  diffusion (z = --1) Eqs. (13) take the form of the equa- 
tions used by Toot  [19], and in the case of diffusion with an inert  substance (z = 0) they become the expres-  
sions used by Frank--Kamenetski i  [12]. 

The resul t ing solutions of the equations of nonequimolar diffusion (11), (13) enable us to state in ex-  
plicit form the conditions for diffusion in the laboratory reference  sys tem [12, 20]. Table 1 shows the 
express ions  for the diffusion s t reams  and the average veloci t ies  of the diffusing components for various 
reference  sys tems ,  including the labora tory  system. As can be seen from the table, for all sys tems except 
the laboratory sys tem the initial conditions taken are the average velocit ies,  on the basis of which we have 
obtained express ions  for the relation between the flows, while for the laboratory reference  system the 
assumed conditions for the flow determine the average diffusion velocity. 

In general  the choice of a par t icular  re ference  sys tem depends, as is known, on the convenience and 
simplicity of the solution of a specific physical problem. Th~ use of the above-cited relat ions for the labo- 
ra to ry  reference  sys tem makes it possible to consider  nonequimolar diffusion under conditions of given 
relat ions between the flows, for example,  in a p rocess  with a chemical  react ion when the amount of sub- 
stance t ransfer red  is determined by s toichiometr ic  coefficients,  or in which the relation between the flows 
has been found experimentally.  

It should be noted that the physical  meaning of the reference sys tem consists  prec ise ly  in the additional 
conditions needed for solving the equations of multicomponent diffusion for the mass  flows of diffusing com-  
ponents. 

In the integration of Fq. (1) it is assumed that the pract ical  diffusion coefficients are independent of 
the diffusion distance [21, 5, 6, 8], i . e . ,  the equation is l inearized. 

The co r rec tness  of the assumed "linearized" theory under conditions of nonequimolar diffusion has 
been verified by compar ing the resul ts  of calculations for flows with three-component ,  four-component ,  
and five-component ideal gas mixtures  in accordance with (2) and (111. The values of the elements  of the 
inverse matr ix of pract ical  diffusion coefficients were determined from the ar i thmetic  means of the concen- 
trations of the diffusing components.  

The calculations were ca r r i ed  out as follows. For  the given values of flows and initial concentrat ions,  
in accordance with (2), the final composit ions of diffusing components  for the corresponding diffusion dis-  
tance were calculated on the "Nairi" computer ,  using a standard p rogram of numerical  integration of a 
sys tem of l inear differential equations by the Runge--Kutta method with an integration interval of 0.01 cm. 
After that, on the basis of the given and calculated composit ions,  the flows N i were determined in accor -  
dance with (11). 

Table 2 shows the initial data and calculation resul ts  for ten charac te r i s t i c  var iants  of the diffusion. 
A comparison of the calculation resul ts  shows the applicability of the assumed "linearized" theory of mult i-  
component diffusion and the possibili ty of using the phenomenological equation (11) for descr ibing the gene- 
ral  case of diffusion, taking account of convective flow. 
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In view of the approximate nature of the solution proposed in this paper  for the equations of nonequi- 
molar  diffusion, the values of z used should be checked on the basis of the requi rements  of thermodynamic 
stability of the sys tem,  which are formulated f rom the thermodynamics  of i r revers ib le  p rocesses  [22-24]. 

C is  the 
C i is  the 
Dij 1 is the 
Di] is the 
Dij is the 
0 ij is  the 
Fij is  the 
Ji is  the 
l is the 
N i i s the 
Yi is the 

0 is the Yi 
v is the 
Vi is  the 
AY is  the 
V is the 
[ ] is the 
~ _J is the 
( )  
i , j  
i , j  

N O T A T I O N  

total concentrat ion of components in mixture ,  g . m o l e / c m  3. 
concentrat ion of component i, g .mole/cm3;  
diffusion coefficient of multicomponent mixture;  
element of the inverse  mat r ix  of pract ical  diffusion coefficient; 
pract ical  diffusion coefficient; 
diffusion coefficient of binary mixture;  
coefficient of friction; 
diffusion flow of component i relative to the given reference  system; 
diffusion distance; 
flow of component i relat ive to fixed reference  system; 
concentration of component i in vapor phase, g .mo le /g  .mole;  
initial concentrat ion of component i in vapor phase, g .mo le /g  .mole;  
average velocity of mixture;  
part ial  mola r  volume of component i; 
difference in concentration; 
gradient;  
square mat r ix  of o rde r  q; 
diagonal mat r ix  of o rde r  q; 

is the column matr ix  of o rde r  q; 
are  the components (i, j = 1, 2 . . . . .  q + 1); 
are  the row and column of matr ix  (i, j = 1, 2 . . . . .  q). 

I. 

2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
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12. 

13. 
14. 
15. 
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